Vielstoffe in wissenschaftlichen Publikationen
Auf der folgenden Seite finden Sie eine kleine Auflistung von Literatur zu Vielstoffgemischen. Für einen vollumfänglichen Überblick von wissenschaftlichen Arbeiten empfiehlt sich die Recherche in den geläufigen Literaturdatenbanken. Dort finden sich zudem Publikationen zu expliziten Fragestellungen bezüglich unterschiedlicher Vielstoffgemische und deren aktuellem Stand der Forschung sowie neueste klinische und präklinische Untersuchungen.
Am Beispiel ätherischer Öle möchten wir Ihnen zudem einen wissenschaftlich basierten Hintergrund zu Vielstoffgemischen bereitstellen. Wo liegt der Ursprung der Vielstoffgemische? Welche Wechselbeziehungen können innerhalb eines natürlichen Gemisches entstehen? Wie interagieren andere Organismen mit Vielstoffgemischen? Welchen Einfluss können Vielstoffgemische auf Zellen haben? Wie könnte ein integrativer Einsatz von Vielstoffen am Beispiel antibiotikaresistenter Bakterien aussehen?
Essential oils as multicomponent mixtures and their potential for human health and well-being
Essential oils (EOs) and their individual volatile organic constituents have been an inherent part of our civilization for thousands of years. They are widely used as fragrances in perfumes and cosmetics and contribute to a healthy diet, but also act as active ingredients of pharmaceutical products. Obtained from natural, mostly plant materials, EOs constitute a typical example of a multicomponent mixture (more than one constituent substances, MOCS) which will play a major role in human and veterinary medicine. (In Submission)
Literaturverzeichnis
Autoren | Titel | Jahr | Weiterleitung |
---|---|---|---|
Schilling et al. | Neues mathematisches Verfahren zur Charakterisierung unbekannter organischer Vielstoffgemische durch die Adsorptionsanalyse | 1989 | Details |
Widmann et al. | Supercritical Fluid Extraction with CO2 of Curcuma longa L. in Comparison to Conventional Solvent Extraction | 2022 | Details |
Morlock | Schadstoffe besser erkennen in komplexen Proben | 2022 | Details |
Ronzheimer et al. | Multiplex planar bioassay detecting phytoestrogens and verified antiestrogens as sharp zones on normal phase | 2022 | Details |
Ristivojević et al. | Fast detection of apricot product frauds by added pumpkin via planar chromatography and chemometrics: greenness assessment by analytical Eco-Scale | 2022 | Details |
Morlock et al. | Evidence that Indo-Pacific bottlenose dolphins self-medicate with invertebrates in coral reefs | 2022 | Details |
Chepngeno et al. | Baobab pulp authenticity and quality control by multi-imaging high-performance thin-layer chromatography | 2022 | Details |
Schreiner et al. | Multiplex planar bioassay with reduced diffusion on normal phase, identifying androgens, verified antiandrogens and synergists in botanicals via 12D hyphenation | 2022 | Details |
Wink | Current understanding of modes of action of multicomponent bioactive phytochemicals: Potential for nutraceuticals and antimicrobials | 2022 | Details |
Melzig | Phytotherapie – schützenswertes immaterielles Kulturerbe? | 2021 | Details |
Schreiner et al. | Is our natural food our homeostasis? Array of a thousand effect-directed profiles of 68 herbs and spices | 2021 | Details |
Kruse et al. | Effects on the probiotic activity of Bacillus subtilis DSM 29784 in cultures and feeding stuff | 2021 | Details |
Schreiner und Morlock | Non-target bioanalytical eight-dimensional hyphenation including bioassay, heart-cut trapping, online desalting, orthogonal separations and mass spectrometry | 2021 | Details |
Krüzselyi et al. | Goldenrod root compounds active against crop pathogenic fungi | 2021 | Details |
Chandana et al. | Eight different bioactivity profiles of 40 cinnamons to discover multipotent compounds by multi-imaging planar chromatography hyphenated with effect-directed analysis and high-resolution mass spectrometry | 2021 | Details |
Klingelhöfer et al. | A bioimaging system combining human cultured reporter cells and planar chromatography to identify novel bioactive molecules | 2021 | Details |
Morlock et al. | Effect-directed profiling of powdered tea extracts for catechins, theaflavins, flavonols and caffeine | 2021 | Details |
Morlock et al. | Miniaturized all-in-one nanoGIT+active system for on-surface metabolization, separation and effect imaging | 2021 | Details |
Morlock et al. | Effect-directed profiling of 17 different fortified plant extracts by high-performance thin-layer chromatography combined with six planar assays and high-resolution mass spectrometry | 2021 | Details |
Azadniya et al. | High-throughput enzyme inhibition screening of 44 Iranian medicinal extracts via piezoelectric spraying of planar cholinesterase assays | 2021 | Details |
Chandana und Morlock | Comprehensive bioanalytical multi-imaging by planar chromatography in situ combined with biological and biochemical assays highlights bioactive fatty acids in abelmosk | 2021 | Details |
Morlock et al. | Effect-directed analysis of 32 vanilla products, characterization of multi-potent compounds and quantification of vanillin and ethyl vanillin | 2021 | Details |
Morlock | High-performance thin-layer chromatography combined with effect-directed assays and high-resolution mass spectrometry as an emerging hyphenated technology: A tutorial review | 2021 | Details |
Inarejos-García et al. | Authentication of commercial powdered Tea (Camellia sinensis L.) extracts by gas chromatography | 2021 | Details |
Melzig | Verloren und vergessen? | 2020 | Details |
Mahran et al. | New planar assay for a streamlined detection and quantification of β-glucuronidase inhibitors and application to botanical extracts | 2020 | Details |
Jamshidi-Aijdi et al. | Effect-directed profiling of aqueous, fermented plant preparations via high-performance thin-layer chromatography combined with in situ assays and high-resolution mass spectrometry | 2020 | Details |
Azadniya et al. | Same analytical method for both (bio)assay and zone isolation to identify/quantify bioactive compounds by quantitative nuclear magnetic resonance spectroscopy | 2020 | Details |
Corni et al. | Effect-directed analysis of biologically active compounds in Cannabis sativa L. (hemp) by high-performance thin-layer chromatography | 2020 | Details |
Mahran et al. | Effect-directed analysis by high-performance thin-layer chromatography for bioactive metabolites tracking in Primula veris flower and Primula boveana leaf extracts | 2019 | Details |
Jamshidi-Aijdi und Morlock | Fast equivalency estimation of unknown enzyme inhibitors in situ the effect-directed fingerprint, shown for Bacillus lipopeptide extracts | 2018 | Details |
Rodríguez Villanueva et al. | Pharmacological activities of phytomedicines: A challenge horizon for rational knowledge | 2018 | Details |
Alolga et al. | Pharmacokinetics of a multicomponent herbal preparation in healthy Chinese and African volunteers | 2015 | Details |
Wink | Modes of action of herbal medicines and plant secondary metabolites | 2015 | Details |
Schwabl und Vennos | Pflanzliche Vielstoffgemische als Netzwerk-Arzneien | 2013 | Details |
Reichling | Pflanzliche Vielstoffgemische – eine rationale Option zur Bekämpfung lästiger Viren? | 2010 | Details |
Saller und Holzer | Multimorbodität, Komorbidität und phytotherapeutische Vielstoffgemische als Arzneimittel | 2010 | Details |
Wink | Wirkungen von in der Phytotherapie eingesetzten Vielkomponenten-Gemischen auf Proteine, Gene und Biomembranen | 2009 | Details |
Wink | Evolutionary advantage and molecular modes of action of multi-component mixtures used in phytomedicine | 2008 | Details |
Büechi | Therapeutische Anwendung von Opium | Vielstoffgemisch versus einzelne Wirkstoffe – ein systematischer Review | 2006 | Details |
Vennos und Schwabl | Chronische Low-Level Entzündungen: Pflanzliche Vielstoffgemische als integrative Erweiterung antioxidativer Strategien | 2006 | Details |
Wink | Die Verwendung pflanzlicher Vielstoffgemische in der Phytotherapie | 2005 | Details |
Wink | Wie funktionieren Phytopharmaka? | 2005 | Details |
Iten und Saller | Fencheltee: Risikoabschätzung der phytogenen Monosubstanz Estragol im Vergleich zum natürlichen Vielstoffgemisch | 2004 | Details |
Reichling et al. | Johanniskraut (Hypericum perforatum L.) – Vielstoffgemische kontra phytogene Einzelstoffe | 2003 | Details |
Oelert | Infrarotspektroskopische Gruppenanalyse an festen aromatischen Vielstoffgemischen | 1967 | Details |